Découvrez nos professeurs et professeures!

Thomas Moss

Professeur titulaire

Thomas Moss
Centre de recherche du CHU de Québec - Université Laval
Centre de recherche sur le cancer
Partager la fiche :

Contribution à la recherche

Axe de recherche de l'Université Laval :

Santé et bien-être durables

Thématiques de recherche de la Faculté de médecine :

Bioinformatique / données massives (big data)
Oncologie

Domaines et intérêts de recherche du (de la) professeur(e) :

Cancer
  • Carcinogénèse
  • Différenciation cellulaire
  • Facteurs de croissance
  • Gène suppresseur
  • Oncogènes
  • Signalisation cellulaire et cancer
Cellulaire
  • Cellule
  • Chromosome
  • Gène
Subcellulaire
  • Acides nucléiques
Génomique et protéomique
  • Bio-informatique
  • Génotype et phénotype
  • Mécanismes biologiques et biochimiques

Projets de recherche

  • Pathobiology and treatment of the UBTF E210K neuroregression syndrome - National Institute of Health (USA) - Subvention de recherche, University of Memphis, co-chercheur - 2021-07-01 au 2026-06-30
  • Fonds institutionnel d'exploitation des infrastructures pour l'Université Laval - Fondation Canadienne pour l'innovation (La) - Fonds d'exploitation des infrastructures (FEI), co-chercheur - 2002-04-01 au 2025-03-31
  • The Ribosomal RNA Genes in Growth, Pluripotency, Senescence and Cancer - Instituts de recherche en santé du Canada - Subvention Projet, chercheur principal - 2024-03-01 au 2025-02-28
  • Mechanism of Ribosomal RNA Gene Silencing and Its Roles in Pluripotency and Cancer - Instituts de recherche en santé du Canada - Subvention Projet, chercheur principal - 2017-04-01 au 2022-03-31
  • Role of Misshappen (NIK/Msn) kinases and Extended-Synaptotagmins (E-Syts) in Wnt and FGF intracellular signaling pathways. - Conseil de recherches en sciences naturelles et génie Canada - Subventions à la découverte SD (individuelles et d'équipe), chercheur principal - 2017-04-01 au 2022-03-31

Publications

  • A tissue restricted role for the Xenopus Jun N-terminal kinase kinase kinase MLK2 in cement gland and pronephric tubule differentiation, , Developmental biology, 2003
  • HMG-boxes, ribosomopathies and neurodegenerative disease., Crane-Robinson C, Moss T, LeDoux MS, Frontiers in genetics, 2023, 10.3389/fgene.2023.1225832
  • THE MAGAZINE-NEWS-Ribosomal genes and cell growth, , Medecine Sciences, 2002
  • The cytoskeletal effector xPAK1 is expressed during both ear and lateral line development in Xenopus, , INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2000
  • Affinity purification of mammalian RNA polymerase I Identification of an associated kinase, , Journal of Biological Chemistry, 1998
  • THE STRUCTURE OF THE XUBF-DNA COMPLEX, , JOURNAL OF CELLULAR BIOCHEMISTRY, 1994
  • DNA-Protein Interactions: Principles and Protocols. Methods in Molecular Biology, , 2001
  • DNA–Protein Interactions: Principles and Protocols, 2nd ed. Edited by Tom Moss, Leo Kretzner, Analytical Biochemistry, 2002, 10.1006/abio.2002.5609
  • Variants of the Xenopus laevis ribosomal transcription factor xUBF are developmentally regulated by differential splicing, , Nucleic acids research, 1992
  • The chromatin landscape of the ribosomal RNA genes in mouse and human, Marianne Sabourin-Felix, Michel G. Tremblay, Jean-Clement Mars, Tom Moss, Chromosome Research, 2019, 10.1007/s10577-018-09603-9
  • A complex array of sequences enhances ribosomal transcription in Xenopus laevis, , Journal of molecular biology, 1987
  • UV Laser-Induced Protein–DNA Crosslinking, Tom Moss, Stefan I. Dimitrov, DNA-Protein Interactions, 1911, 10.1385/0-89603-256-6:227
  • Competitive recruitment of CBP and Rb-HDAC regulates UBF acetylation and ribosomal transcription, , Molecular cell, 2000
  • mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF†, , Molecular and cellular biology, 2003
  • Spacer promoters are essential for efficient enhancement of X. laevis ribosomal transcription, Tom Moss, Ronald F.J. De Winter, Cell, 1986, 10.1016/0092-8674(86)90765-8
  • Overexpression of the transcription factor UBF1 is sufficient to increase ribosomal DNA transcription in neonatal cardiomyocytes: implications for cardiac hypertrophy, , Proceedings of the National Academy of Sciences, 1996
  • A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis, , Nature, 1983
  • More ribosomal spacer sequences from Xenopus laevis, Max L. Birnsteil, Paul G. Boseley, Tom Moss, Nucleic Acids Research, 1980, 10.1093/nar/8.3.467
  • An analysis of Xenopus tyrosine kinase genes and their expression in early development, , DNA and cell biology, 1994
  • Gènes ribosomiques et régulation de la croissance cellulaire, , Le Magazine: Nouvelles, 2002
  • DNA-Protein Interactions, Tom Moss, 2001, 10.1385/1592592082
  • The cellular abundance of the essential transcription termination factor TTF-I regulates ribosome biogenesis and is determined by MDM2 ubiquitinylation, , Nucleic acids research, 2012
  • DNA tailing without terminal transferase, Tom Moss, Christine Dutta, Nucleic Acids Research, 1988, 10.1093/nar/16.15.7744
  • Readthrough enhancement and promoter occlusion on the ribosomal genes of Xenopus laevis, , Biochemistry and Cell Biology, 1992
  • DNA methyltransferase inhibition may limit cancer cell growth by disrupting ribosome biogenesis, , Epigenetics, 2011
  • The splice variants of UBF differentially regulate RNA polymerase I transcription elongation in response to ERK phosphorylation, , Nucleic acids research, 2008
  • Sites of Histone/Histone Interaction in the H3˙ H4 Complex, , European Journal of Biochemistry, 1977
  • An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF, , Molecular cell, 2001
  • Cellular regulation of ribosomal DNA transcription: both rat and Xenopus UBF1 stimulate rDNA transcription in 3T3 fibroblasts, , Nucleic acids research, 1999
  • The DNA supercoiling architecture induced by the transcription factor xUBF requires three of its five HMG-boxes, , Nucleic acids research, 1996
  • Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase 1, , Progress Nucl Acid Res Mol Biol, 1995
  • Metabolic Labeling in the Study of Mammalian Ribosomal RNA Synthesis, Tom Moss, Victor Y. Stefanovsky, The Nucleolus, 2016, 10.1007/978-1-4939-3792-9_11
  • Loss of human ribosomal gene CpG methylation enhances cryptic RNA polymerase II transcription and disrupts ribosomal RNA processing, , Molecular cell, 2009
  • A novel role for the Pol I transcription factor UBTF in maintaining genome stability through the regulation of highly transcribed Pol II genes, , Genome research, 2015
  • Bidirectional cooperation between Ubtf1 and SL1 determines RNA Polymerase I promoter recognition in cell and is negatively affected in the UBTF-E210K neuroregression syndrome, Tom Moss, Mark S. Ledoux, Victor Y. Stefanovsky, Mohammad M. Khan, Roderick T. Hori, Frédéric Lessard, Jean-Clément Mars, Melissa Valère, Dany S. Sibai, Michel G. Tremblay, 2021, 10.1101/2021.06.07.447350
  • EphA4 signaling suppresses Cdc42 and RhoA activities by recruiting Pak1 in order to regulate blastomere association in the Xenopus blastula embryo., , DEVELOPMENTAL BIOLOGY, 2005
  • At the crossroads of growth control; making ribosomal RNA, , Current opinion in genetics & development, 2004
  • A new paradigm for the regulation of the mammalian ribosomal RNA genes., , Biochemical Society Transactions, 2006
  • Depletion of the cisplatin targeted HMGB-box factor UBF selectively induces p53-independent apoptotic death in transformed cells., Moss T, Tremblay MG, Stefanovsky V, Mars JC, Herdman C, Hamdane N, 2015, 10.18632/oncotarget.4823
  • High-resolution proton-magnetic-resonance studies of chromatin core particles [calf thymus], , European Journal of Biochemistry (Germany, FR), 1978
  • DNA methyltransferase inhibition may limit cancer cell growth by disrupting ribosome biogenesis, Tom Moss, Epigenetics, 2011, 10.4161/epi.6.2.13625
  • DNase I Footprinting, Tom Moss, Benoît Leblanc, DNA-Protein Interactions, 1911, 10.1385/1-59259-208-2:031
  • Growth factor signaling regulates elongation of RNA polymerase I transcription in mammals via UBF phosphorylation and r-chromatin remodeling, , Molecular cell, 2006
  • DNase I Footprinting, Tom Moss, Benoît Leblanc, DNA-Protein Interactions, 1911, 10.1385/0-89603-256-6:1
  • Role of p21-activated kinase in cell polarity and directional mesendoderm migration in the Xenopus gastrula, , Developmental dynamics, 2009
  • Agonistic and antagonistic roles for TNIK and MINK in non-canonical and canonical Wnt signalling, , PLoS One, 2012
  • Transcription of cloned Xenopus laevis ribosomal DNA microinjected into Xenopus oocytes, and the identification of an RNA polymerase I promoter, , Cell, 1982
  • Nucleosomes, histone interactions, and the role of histones H3 and H4, , Cold Spring Harbor symposia on quantitative biology, 1978
  • Control of ribosomal RNA synthesis by hematopoietic transcription factors., Paralkar VR, Pimkin M, Ganley ARD, Wilusz JE, Tan K, Moss T, Tremblay MG, Lv K, Gao L, Ai Y, Wu-Corts DJ, Thorsheim CL, Somers P, Blum J, George SS, Antony C, Molecular cell, 2022, 10.1016/j.molcel.2022.08.027
  • ERK modulates DNA bending and enhancesome structure by phosphorylating HMG1-boxes 1 and 2 of the RNA polymerase I transcription factor UBF, , Biochemistry, 2006
  • IS048 The a_1-Adrenergic Responsive Transcription Factor, UBF1, Regulates rDNA Transcription in Neonatal Cardiomyocytes, , Japanese circulation journal, 1998
  • The promotion of ribosomal transcription in eukaryotes., , Oxford surveys on eukaryotic genes, 1985
  • An immediate response to ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF (vol 8, pg 1063, 2001), , MOLECULAR CELL, 2002
  • Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction., , The EMBO journal, 1993
  • A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription, Tom Moss, Mark D. Robinson, Helen Lindsay, Marianne Sabourin-Felix, Michel G. Tremblay, Victor Y. Stefanovsky, Jean-Clement Mars, Chelsea Herdman, PLOS Genetics, 2017, 10.1371/journal.pgen.1006899
  • A Deconvolution Protocol for ChIP-Seq Reveals Analogous Enhancer Structures on the Mouse and Human Ribosomal RNA Genes, Tom Moss, Michel G. Tremblay, Marianne Sabourin-Felix, Jean-Clement Mars, G3: Genes|Genomes|Genetics, 2018, 10.1534/g3.117.300225
  • The putative promoter of a Xenopus laevis ribosomal gene is reduplicated, , Nucleic acids research, 1979
  • Point mutation analysis of the Xenopus laevis RNA polymerase I core promoter, , Nucleic acids research, 1990
  • A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis, , Cellular and molecular life sciences, 2007
  • UV Laser-Induced Protein-DNA Crosslinking, Tom Moss, Stefan I. Dimitrov, DNA-Protein Interactions, 1911, 10.1385/1-59259-208-2:395
  • A ubiquitin-conjugating enzyme, ube2d3. 2, regulates xMLK2 and pronephros formation in Xenopus, , Differentiation, 2008
  • The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase I transcription factor TTF-I, , Molecular cell, 2010
  • Mlk1, Thomas Moss, Nicolas Bisson, AfCS-Nature Molecule Pages, 2009, 10.1038/mp.a001549.01
  • DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules, , Nucleic acids research, 2001
  • DNase I footprinting, , DNA-Protein Interactions, 1994
  • Promotion and Regulation of Ribosomal Transcription in Eukaryotes by RNA Polymerase, Victor Y. Stefanovsky, Tom Moss, Progress in Nucleic Acid Research and Molecular Biology, 1995, 10.1016/s0079-6603(08)60810-7
  • UV-Laser Crosslinking of Proteins to DNA, Daniel Houde, Stefan I. Dimitrov, Tom Moss, Methods, 1997, 10.1006/meth.1996.0409
  • High resolution studies of the Xenopus laevis ribosomal gene promoter in vivo and in vitro., , Journal of Biological Chemistry, 1992
  • UV-laser crosslinking of proteins to DNA, , Methods, 1997
  • EphA4 signaling regulates blastomere adhesion in the Xenopus embryo by recruiting Pak1 to suppress Cdc42 function, , Molecular biology of the cell, 2007
  • Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF, , Science, 1994
  • UBF levels determine the number of active ribosomal RNA genes in mammals, , The Journal of cell biology, 2008
  • A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis, Tom Moss, Nature, 1983, 10.1038/302223a0
  • More ribosomal spacer sequences from Xenopus laevis, , Nucleic acids research, 1980
  • In Vitro DNase I Footprinting, Tom Moss, Benoît P. Leblanc, DNA-Protein Interactions, 2015, 10.1007/978-1-4939-2877-4_2
  • The putative promoter of a Xenopus laevis ribosomal gene is reduplicated, Max L. Birnstiel, Tom Moss, Nucleic Acids Research, 1979, 10.1093/nar/6.12.3733
  • The role of acetylation in rDNA transcription., , FASEB JOURNAL, 2000
  • Heterogeneity in the Xenopus ribosomal transcription factor xUBF has a molecular basis distinct from that in mammals, , FEBS letters, 1991
  • METHOD TO FACILITATE BASE SEQUENCING OF HIGHLY REPETITIVE DNA, , EXPERIENTIA, 1978
  • UV laser-induced protein-DNA crosslinking, , DNA-Protein Interactions, 2001
  • Enzymatic removal of vitelline membrane and other protocol modifications for whole mount in situ hybridization of Xenopus embryos, , Trends in Genetics, 1996
  • The endocytic adapter E-Syt2 recruits the p21 GTPase activated kinase PAK1 to mediate actin dynamics and FGF signalling, , Biology open, 2012
  • Disruption of the UBF gene induces aberrant somatic nucleolar bodies and disrupts embryo nucleolar precursor bodies, Tom Moss, Attila Németh, Victor Y. Stefanovsky, Stefan Dillinger, Michel G. Tremblay, Nourdine Hamdane, Gene, 2017, 10.1016/j.gene.2016.09.013
  • The Xenopus laevis ribosomal gene terminator contains sequences that both enhance and repress ribosomal transcription., , Molecular and cellular biology, 1989
  • PAK interacts with NCK and MLK2 to regulate the activation of jun N-terminal kinase, , FEBS letters, 2003
  • Sequence organization of the spacer DNA in a ribosomal gene unit of Xenopus laevis, , Cell, 1979
  • Spacer promoters are essential for efficient enhancement of X. laevis ribosomal transcription, , Cell, 1986
  • 5'-Labeling and poly (dA) tailing., , Methods in enzymology, 1979
  • A transcriptional function for repetitive ribosomal spacers in Xenopus?(reply), , Nature, 1983
  • 4. Fragile X Related 1 (xFxr1) de Xenopus laevis et la myogenèse primaire., , Résumé, 1911
  • SEQUENCE-ANALYSIS SUGGESTS A POSSIBLE FUNCTION FOR THE RIBOSOMAL SPACER DNA OF XENOPUS-LAEVIS, , Experientia, 1979
  • Mapping of a sequence essential for the nuclear transport of the Xenopus ribosomal transcription factor xUBF using a simple coupled translation-transport and acid extraction approach, , DNA and cell biology, 1993
  • TTF1 control of LncRNA synthesis and cell growth delineates a tumour suppressor pathway acting directly on the ribosomal RNA Genes, Tom Moss, Mark D. Robinson, Marianne Sabourin-Félix, Christophe Tav, Frédéric Lessard, Michel G. Tremblay, Dany S. Sibai, 2024, 10.1101/2024.02.11.579707
  • UV laser-induced protein-DNA crosslinking, , DNA-Protein Interactions, 1994
  • DNase I footprinting, , DNA-Protein Interactions, 2009
  • The ribosomal spacer in Xenopus laevis is transcribed as part of the primary ribosomal RNA, , Nucleic acids research, 1986
  • CELL GROWTH AND DEVELOPMENT-mTOR-Dependent Regulation of Ribosomal Gene Transcription Requires S6K1 and Is Mediated by Phosphorylation of the Carboxy-Terminal Activation Domain of the Nucleolar, , Molecular and Cellular Biology, 2003
  • A nucleosome-like structure containing DNA and the arginine-rich histones H3 and H4, , Nucleic acids research, 1977
  • Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity, Tom Moss, Sabrina Bellenfant, Joëlle Baril, Prakash K. Mishra, François Guillou, Chelsea Herdman, Michel G. Tremblay, Journal of Biological Chemistry, 2015, 10.1074/jbc.M115.656918
  • The enhancement of ribosomal transcription by the recycling of RNA polymerase I, Tom Moss, Keith Mitchelson, Nucleic Acids Research, 1987, 10.1093/nar/15.22.9577
  • DNase I footprinting, , DNA-Protein Interactions, 2001
  • Extended-Synaptotagmins (E-Syts); the extended story, Tom Moss, Chelsea Herdman, Pharmacological Research, 2016, 10.1016/j.phrs.2016.01.034
  • DNase I Footprinting, Tom Moss, Benoît Leblanc, Nucleic Acid Protocols Handbook, The, 1911, 10.1385/1-59259-038-1:729
  • Mlk2, Thomas Moss, Nicolas Bisson, AfCS-Nature Molecule Pages, 2009, 10.1038/mp.a001550.01
  • Loss of all 3 Extended Synaptotagmins does not affect normal mouse development, viability or fertility, Tom Moss, Michel G. Tremblay, Cell Cycle, 2016, 10.1080/15384101.2016.1203494
  • The catalytic domain of xPAK1 is sufficient to induce myosin II dependent in vivo cell fragmentation independently of other apoptotic events, , Developmental biology, 2003
  • Behavioral and molecular effects of Ubtf knockout and knockdown in mice., LeDoux MS, Moss T, Hargrove PW, Xiao J, Moshahid Khan M, Hori RT, Brain research, 2022, 10.1016/j.brainres.2022.148053
  • Identification of a mammalian RNA polymerase I holoenzyme containing components of the DNA repair/replication system, , Nucleic acids research, 1999
  • Inactivation of topoisomerase I or II may lead to recombination or to aberrant replication termination on both SV40 and yeast 2 $μ$m DNA, , Chromosoma, 1996
  • DNA-Protein Interactions. Principles and Protocols, second edition, edited by Tom Moss, Humana Press, 2001, 638 p., Olivier Leroy, Biochimie, 2001, 10.1016/s0300-9084(01)01337-2
  • The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans, Engel C, Rudack T, Bruckmann A, Fürtges T, Mars J, Tlučková K, Ramsay E, Abascal-Palacios G, Heiss F, Höcherl M, Bleckmann A, Straub K, Pilsl M, Daiß J, Life science alliance, 2022
  • Physical studies on the H3/H4 histone tetramer, E. M. Bradbury, Colyn Crane-Robinson, Peter D. Cary, Tom Moss, Biochemistry, 1976, 10.1021/bi00656a003
  • Readthrough enhancement and promoter occlusion on the ribosomal genes of Xenopus laevis, Benoît Leblanc, Keith Mitchelson, Anne-Marie Larose, Tom Moss, Biochemistry and Cell Biology, 1992, 10.1139/o92-050
  • The RNA-binding protein fragile X-related 1 regulates somite formation in Xenopus laevis, , Molecular biology of the cell, 2005
  • A recurrent de novo missense mutation in UBTF causes developmental neuroregression., LeDoux MS, Reiter LT, Hope KA, Tian J, Khan MM, Xiao J, Wolfe LA, Harper F, Adams DR, Gahl WA, Goldstein A, Tifft CJ, Malicdan MCV, Hori RT, Toro C, Human molecular genetics, 2018, 10.1093/hmg/ddx435
  • The chemotherapeutic agent CX-5461 irreversibly blocks RNA polymerase I initiation and promoter release to cause nucleolar disruption, DNA damage and cell inviability, Tom Moss, Frédéric Lessard, Marianne Sabourin-Felix, Dany S Sibai, Mélissa Valere, Michel G Tremblay, Jean-Clément Mars, NAR Cancer, 2020, 10.1093/narcan/zcaa032
  • Conditional inactivation of Upstream Binding Factor reveals its epigenetic functions and the existence of a somatic nucleolar precursor body, , PLoS Genetics, 2014
  • DNA-Protein Interactions, , Methods in Molecular Biology™, 2009, 10.1007/978-1-60327-015-1
  • Gènes ribosomiques et régulation de la croissance cellulaire, Emmanuel Käs, Nicolas Bissont, Tom Moss, médecine/sciences, 2002, 10.1051/medsci/20021810940
  • The Short N-Terminal Repeats of Transcription Termination Factor 1 Contain Semi-Redundant Nucleolar Localization Signals and P19-ARF Tumor Suppressor Binding Sites., , The Yale journal of biology and medicine, 2019
  • A model for the topology of active ribosomal RNA genes, , EMBO reports, 2011
  • Coordinate replication of dispersed repetitive sequences in Physarum polycephalum, , Experimental cell research, 1989
  • A ribosomal orphon sequence from Xenopus laevis flanked by novel low copy number repetitive elements, , Biological chemistry, 1999
  • Identification of a novel xPAK1 partner important for proper FGF signaling in Xenopus laevis, , Developmental Biology, 2006
  • The structure and function of the ribosomal gene spacer, , The nucleolus. Cambridge University Press, Cambridge, 1982
  • The enhancement of ribosomal transcription by the recycling of RNA polymerase I, , Nucleic acids research, 1987
  • The p21-activated kinase Pak1 regulates induction and migration of the neural crest in Xenopus, , Cell cycle, 2012
  • Catalytic and non-catalytic forms of the neurotrophin receptor xTrkB mRNA are expressed in a pseudo-segmental manner within the early Xenopus central nervous system., , The International journal of developmental biology, 1996
  • Mice lacking both mixed-lineage kinase genes Mlk1 and Mlk2 retain a wild type phenotype, , Cell Cycle, 2008
  • A pH-Dependent Interaction between Histones H2A and H2B Involving Secondary and Tertiary Folding, , European Journal of Biochemistry, 1976
  • High-resolution proton-magnetic-resonance studies of chromatin core particles, , European Journal of Biochemistry, 1978
  • At the Center of Eukaryotic Life, Victor Y. Stefanovsky, Tom Moss, Cell, 2002, 10.1016/s0092-8674(02)00761-4
  • Transcription factor UBF depletion in mouse cells results in downregulation of both downstream and upstream elements of the rRNA transcription network., Santama N, Moss T, Dany Sibai, Mattheou C, Christodoulou A, Theophanous A, The Journal of biological chemistry, 2023, 10.1016/j.jbc.2023.105203
  • Antisense and sense poly (A)- RNAs from the Xenopus laevis pyruvate dehydrogenase gene loci are regulated with message production during embryogenesis, , Gene, 1996
  • Extended-synaptotagmin-2 mediates FGF receptor endocytosis and ERK activation in vivo, , Developmental cell, 2010
  • Ribosomal DNA promoter recognition is determined in vivo by cooperation between UBTF1 and SL1 and is compromised in the UBTF-E210K neuroregression syndrome, Tom Moss, Mark S. LeDoux, Victor Y. Stefanovsky, Mohammad Moshahid Khan, Roderick T. Hori, Frédéric Lessard, Jean-Clément Mars, Melissa Valère, Dany S. Sibai, Michel G. Tremblay, PLOS Genetics, 2022, 10.1371/journal.pgen.1009644
  • DNA-protein Interactions, , 2001
  • At the center of eukaryotic life, , Cell, 2002
  • The structural and architectural role of upstream binding factor, UBF, , Transcription of ribosomal genes by eukaryotic RNA polymerase I. Austin: Landes Bioscience, 1998
  • The RNA polymerase I transcription factor xUBF contains 5 tandemly repeated HMG homology boxes, , Nucleic acids research, 1991
  • Regulation of rRNA synthesis in human and mouse cells is not determined by changes in active gene count, , Cell Cycle, 2006
  • Loss of Extended Synaptotagmins ESyt2 and ESyt3 does not affect mouse development or viability, but in vitro cell migration and survival under stress are affected, , Cell Cycle, 2014
  • The cruciform DNA mobility shift assay: a tool to study proteins that recognize bent DNA, , DNA-Protein Interactions, 2009

Contribution à l'enseignement aux cycles supérieurs

Étudiant(e)s dirigé(e)s*

Depuis 2009
  • Abdelatif Nourdine Hamdane - Doctorat - 2015/01
  • Chelsea Herdman - Maîtrise avec mémoire - 2015/05
  • Prakash Kumar Mishra - Doctorat - 2015/05
  • Jean-Clement Mars - Doctorat - 2019/01
  • Dany Sibai - Doctorat - 2024/01

Encadrement d'étudiant(e)s pour les programmes suivants :

Disponibilité d'encadrement d'étudiant(e)s

Ce (cette) professeur(e) est présentement à la recherche d'étudiant(e)s.

Envoyer un courriel
*Les supervisions d’étudiant(e)s de 1er cycle en stage de recherche et de résident(e)s aux études médicales postdoctorales seront répertoriées ultérieurement.